
Analysis of Computationally Demanding Models

with Continuous and Categorical Inputs

Curtis B. Storliea, Brian J. Reichb, Jon C. Heltonc, Laura P. Swilerd,

Cedric J. Sallaberryd

aLos Alamos National Laboratory, NM,

bNorth Carolina State University, Raleigh, NC

cArizona State University, Tempe, AZ

dSandia National Laboratories, Albuquerque, NM

February 20, 2012

Abstract

The analysis of many physical and engineering problems involves running com-
plex computational models (simulation models, computer codes). With problems
of this type, it is important to understand the relationships between the input
variables (whose values are often imprecisely known) and the output, and to char-
acterize the uncertainty in the output. Often, some of the input variables are
categorical in nature (e.g. pointer variables to alternative models or different types
of material, etc.). A computational model that sufficiently represents reality is often
very costly in terms of run time. When the models are computationally demand-
ing, meta-model approaches to their analysis have been shown to be very useful.
However, the most popular meta-models for computational computer models do
not explicitly allow for categorical input variables. In this case, categorical inputs
are simply ordered in some way and treated as continuous variables in the estima-
tion of a meta-model. In many cases, this can lead to undesirable and misleading
results. In this paper, two meta-models based on functional ANOVA decomposi-
tion are presented that explicitly allow for an appropriate treatment of categorical
inputs. The effectiveness of the presented meta-models in the analysis of models
with continuous and categorical inputs is illustrated with several test cases and also
with results from a real analysis.
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1 Introduction

The analysis of many physical and engineering problems involves running complex com-

putational models (simulation models, computer codes). With problems of this type, it is

important to understand the relationships between the input variables (whose values are

often imprecisely known) and the output. Often, some of the input variables are categori-

cal in nature (e.g. pointer variables to alternative models or discrete design choices, etc.).

A computational model that sufficiently represents reality is often very costly in terms of

run time. When the models are computationally demanding, meta-model approaches to

their analysis have been shown to be very useful [1, 2, 3, 4]. However, the meta-models

most commonly used thus far for this purpose do not explicitly allow for categorical in-

put variables. Hence, these categorical inputs must then be ordered in some way and

treated as continuous variables when estimating a meta-model. In some cases, this can

lead to undesirable and misleading results. There is clearly an intuitive appeal for a

more appropriate treatment of categorical inputs than simply treating categorical inputs

as continuous variables. In this article, we review some of the existing approaches to

this problem [5, 6] and present two new approaches based on Smoothing Spline ANOVA

decomposition. In addition, we demonstrate the practical benefits to a more appropri-

ate treatment of categorical variables when performing uncertainty analysis (UA) and

sensitivity analysis (SA) with several examples.

In general, we will consider complex computer models of the form

y = f(x) + ε, (1.1)

where y = (y1, . . . , ym) is a vector of outputs, x = [x1, x2, . . . , xp] is a vector of imprecisely

known inputs, and ε is a vector of errors (usually small) incurred by the numerical

method used to solve for y [7, 4]. Although analyses for real systems almost always
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involve multiple output variables as indicated above, the following discussions assume

that a single real-valued result of the form y = f(x) + ε is under consideration. This

simplifies the notation and the results under discussion are valid for individual elements

of y. In the case of many outputs, it may be beneficial to reduce the dimensionality

with principle components or wavelet decomposition as presented in Higdon et al. [8] and

Bayarri et al. [9], respectively.

The model f can be quite large and involved (e.g., a system of nonlinear partial

differential equations requiring numerical solution or possibly a sequence of complex,

linked models as is the case in a probabilistic risk assessment for a nuclear power plant [10]

or a performance assessment for a radioactive waste disposal facility [11]); the vector x

of analysis inputs can be of high dimension and complex structure (e.g., several hundred

variables, with individual variables corresponding to physical properties of the system

under study or perhaps to designators for alternative models). The uncertainty in each

element of x is typically characterized by a probability distribution. Such distributions

are intended to numerically capture the existing knowledge about the elements of x and

are often developed through an expert review process or based on experimental data; see

[12, 13] for more on the characterization of input variable uncertainty.

The uncertainty in the input vector x creates two important components to the

analysis of these complex models (i) sensitivity analysis (SA) and (ii) uncertainty analysis

(UA). The purpose of SA is to identify the most significant factors or variables affecting

the model predictions. The purpose of UA is to quantify the uncertainty in the model

results due to the uncertainty in the inputs. If experimental data is available, there

is also the problem of model calibration/validation. We do not consider this problem

here, but refer the reader to [2, 14] for more details. There are a number of approaches

to SA, including differential analysis, variance decomposition procedures, Monte Carlo

(sampling-based) analysis, and response surface methods [12, 13, 15]. UA is usually

performed by estimating quantities such as threshold exceedence probabilities, quantiles
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of y, or even the entire CDF of y.

In this paper, we consider the problem of performing SA and UA on complex models

with mixed continuous/categorical inputs. We propose two meta-models that explicitly

allow for appropriate treatment of categorical inputs. In addition to the intuitive appeal

of this treatment, we demonstrate the practical benefits with test cases and and also

with results from an actual analysis. The rest of the paper is organized as follows.

In Section 2, we describe two new meta-model approaches which explicitly allow for

categorical variables and review an extension to the popular Gaussian Process (GP)

meta-model which allows for categorical inputs. We then describe the use of these meta-

models for the purpose of SA and UA in Section 3. A simulation study to illustrate

the properties of the proposed methodology is described in Section 4. In Section 5 we

demonstrate the utility of these methods with results obtained in an analysis for the

proposed Yucca Mountain repository for high-level radioactive waste [16, 17]. Finally, a

concluding discussion is given in Section 6.

2 Meta-Models allowing for Categorical Inputs

In this section, we first review an extension of the popular Gaussian Process (GP) meta-

model put forth by [5, 6]. We then describe an extension to categorical inputs for two

new meta-model approaches [18, 19] that account for categorical inputs and reduce the

dimensionality of the problem through functional ANOVA and variable selection.

2.1 Gaussian Process Models for Nonparametric Regression

Gaussian Process (GP) models have gained much popularity for use as a meta-model in

computer experiments; see [1, 2, 20, 21]. Most of this previous work assumes that all

inputs are continuous, with the exception of the recent work in [5, 6, 22]. We first review

the GP framework for a set of inputs x1, . . . , xq that are continuous on [0, 1], and then
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extend this framework to the mixed continuous/categorical input case.

A GP is a stochastic process (random function), Y (x), over the space x ∈ X such

that for any finite set of x values, {x1,x2, . . . ,xk},

Y = [Y (x1), Y (x2), . . . , Y (xk)]
T (2.1)

has a multivariate normal distribution. Hence, a GP is completely characterized by its

mean and covariance functions

µY (x) = E[Y (x)] (2.2)

and

KY (x,x′) = Cov[Y (x), Y (x′)], (2.3)

respectively. Definitions of µY (x) and KY (x,x′) are discussed in conjunction with

Eq. (2.10) and Eqs. (2.11)-(2.15), respectively. Typically, the meta-model is then de-

fined as

f̂(x) = E[Y (x) | Y (x1) = y1, Y (x2) = y2, . . . , Y (xn) = yn], (2.4)

which is the mean of Y (x) given the observed values (xi, yi), i = 1, . . . , n. The process

of obtaining f̂ is often called Kriging after Daniel Gerhardus Krige [23].

Since Y (x) is Gaussian, the expression for f̂ can be given explicitly as

f̂(x) = µY (x) + γΣ−1(y − µ), (2.5)

where

γ = [KY (x1,x), KY (x2,x), . . . , KY (xn,x)] , (2.6)
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Σ =


KY (x1,x1) KY (x1,x2) · · · KY (x1,xn)

KY (x2,x1) KY (x2,x2) · · · KY (x2,xn)
...

...
. . .

...

KY (xn,x1) KY (xn,x2) · · · KY (xn,xn)

 , (2.7)

y = [y1, y2, . . . , yn]T , (2.8)

µ = [µY (x1), µY (x2) . . . , µY (xn)]T , (2.9)

and the (xi, yi), i = 1, . . . , n are the previously indicated observed values (pp. 160-161

[24]).

It is possible to assume a constant mean GP and let any trend in the output be

accounted for as part of the random process. It is also common, however, to assume that

the mean function is linear in the individual xj. That is,

µY (x) = β0 + β1x1 + · · ·+ βpxp, (2.10)

where the βj are unknown parameters that need to be estimated from the data.

There are many possible covariance structures one can use; see Section 2 of [25]

for a discussion. Here we focus on one very popular class of covariances, the powered

exponential family [7, 21]. With the assumption all components of x are continuous, this

covariance is given by

KY (x,x′) = τ 2 exp

{
−

p∑
j=1

ηj|xj − x′j|ρj
}
, (2.11)

where τ 2 = Var[Y (x)] is the unconditional, constant (i.e., for all x) variance of the

process. The ηj, j = 1, . . . , p, referred to as the range parameters, control how far

correlation extends in each input direction. The power parameters 0 < ρj ≤ 2 control the

shape of the correlation function, and thus the smoothness of the process. These may be

estimated but are typically fixed at ρj = 2, resulting in an infinitely differentiable process.
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Values of 0 < ρj < 2 result in a continuous, but non-differentiable process. These two

extremes can be somewhat unsettling, which has led others to consider the Matern family

of covariances with which the user can specify the level of differentiability [25]. However,

the powered exponential has more intuitive appeal in terms of understanding how distance

controls correlation and remains the most commonly used covariance function for the use

of GPs to approximate computer models [1, 2, 21, 26].

Categorical Predictors. The covariance function in Eq. (2.11) can be adapted to

allow for categorical xj variables as in [5]. To facilitate the discussion, we generalize our

notation to the following. Assume that x1, . . . , xq are continuous on [0, 1] as previously in

this section, while xq+1, . . . , xp are unordered categorical variables. For simplicity, assume

xj ∈ {1, 2, . . . ,mj} for j = q + 1, . . . , p, where the ordering of the integers representing

the groups for xj is completely arbitrary.

For the moment, consider possible covariance functions for just a single input which

is categorical in nature. To construct a GP on just one categorical input we could assume

the covariance function

K(xj, x
′
j) = τ 2

(
I{xj=x′j} + νI{xj 6=x′j}

)
, (2.12)

for 0 ≤ ν < 1, where (i) xj, x
′
j ∈ {1, 2, . . . ,mj} are possible values for the categorical

input, (ii) IA is the indicator function defined by IA = 1 if A and 0 otherwise. Equiv-

alently, we could reparameterize Eq. (2.12) as K(xj, x
′
j) = τ 2 exp[−ηjI{xj 6=x′j}]. Now by

combining the covariance in Eq. (2.11) for continuous inputs and that in Eq. (2.12) for

categorical inputs to produce a separable covariance (i.e., product of one dimensional

covariances) for x we have

KY (x,x′) = τ 2 exp

{
−

q∑
j=1

ηj|xj − x′j|ρj −
p∑

j=q+1

ηjI{xj 6=x′j}

}
. (2.13)
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The form in Eq. (2.13) assumes a covariance for categorical inputs that is isotropic in

nature (i.e., all distinct categories have equal covariance a-priori with each other), which

is reasonable in many cases. A more flexible modeling approach is also provided in [6].

Often, it is also useful to allow the observations to have an independent and identically

distributed (iid) error term as in the traditional regression models. In this case, assume

Y (x) = Z(x) + ε, (2.14)

where (i) Z(x) is a GP with mean and covariance function µZ and KZ , respectively,

(ii) ε ∼ N(0, σ2) and is independent for all values of x, and (iii) Z(x) independent of

ε. Since the noise process ε and the actual process Z(x) are assumed independent, the

covariance function for Y (x) is obtained by adding what is called the “nugget” term to

the covariance function K. That is,

KY (x,x′) = KZ(x,x′) + σ2I{x=x′}, (2.15)

where σ2 is the variance of the iid errors and I{x=x′} is the indicator function that equals

1 if x = x′ and 0 otherwise. The term σ2I{x=x′} is commonly referred to as the nugget

term. The term nugget is borrowed from gold mining to describe an independent source

of variability much in the way that gold nuggets tend to be randomly scattered within

a mine. Estimation of the model parameters βj, ηj, τ
2, and σ2 commonly proceeds via

maximum likelihood estimation (MLE); see [27, 2, 28] for details.

The GP can be conveniently considered as a Bayesian approach to the function esti-

mation problem. This is because the GP that we use represents our prior belief of what

our computer model output will produce. Before the output is evaluated at the design

points, these output values are unknown to us. However, we may have some preconceived

notion about what the output will look like (e.g., we may believe that the underlying
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output function is “smooth” in some sense). The GP model represents this subjective

uncertainty about what the output might look like. One benefit to this Bayesian frame-

work is the relative ease of quantifying uncertainty by forming Bayesian credible sets

for quantities of interest such as those described in Section 3. A 100(1 − α)% Bayesian

credible set for a parameter θ is defined to be a set A (not necessarily unique) for which

Pr(θ ∈ A | Y = y) = 1− α, (2.16)

see [29]. If the free parameters of the model (βj’s, τ , σ2 ,ηj’s) are estimated via MLE

or by some other means and then treated as fixed, then this procedure is referred to

as an empirical Bayesian approach. It is well known, however, that this approach can

underestimate the uncertainty in parameter values or predictions [30]. Hence, when

using this approach (i.e., GP with MLE estimation) to perform SA and UA as discussed

in Section 3, we still recommend using the kriging estimate, f̂ , in conjunction with a

bootstrapping procedure to produce CIs for any quantities of interest; see [4] for more

details.

Because of the inherent Bayesian nature of the GP approach, it is also becoming

a common practice to put hyper-priors on the parameters in the mean and covariance

functions to make the procedure fully Bayesian (i.e., no MLE estimation involved) and

approximate the posterior distribution of all of the unknown parameters with MCMC

[26, 7, 14]. When the estimation is fully Bayesian, the credible sets discussed in the

preceding paragraph then become a more natural way to represent the uncertainty in the

estimate. This is the approach that is taken in Section 2.3, which combines GP modeling

with the function ANOVA concepts described next in Section 2.2.
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2.2 Adaptive COmponent Selection and Shrinkage Operator

We now review the Adaptive COmponent Selection and Shrinkage Operator (ACOSSO)

surface approximation procedure [18], and extend this method to allow for categorical

inputs. ACOSSO was developed under the Smoothing Spline Analysis of Variance (SS-

ANOVA) modeling framework. As it is a smoothing type method, ACOSSO works best

when the underlying function is somewhat smooth. For functions which are known to

have sharp changes or peaks, etc., other methods are more appropriate [31, 32, 33].

ACOSSO can also work well when there are a large number of input variables. To

facilitate the description of ACOSSO, we first review the univariate smoothing spline. We

then describe the tensor product spline which underlies the SS-ANOVA framework under

the assumption that the predictors are continuous. Lastly, we introduce the treatment

of categorical predictors and the ACOSSO estimator.

Univariate Smoothing Splines. With some abuse of notation, let xi, i = 1, . . . , n,

denote the ith observation of a univariate input x for the discussion of univariate smooth-

ing splines only. Without loss of generality, we restrict attention to the domain [0, 1].

We can always rescale the input x to this domain via a transformation. Assume that

the unknown function f to be estimated belongs to the second order Sobolev space

S2 = {g : g, g′ are absolutely continuous and g′′ ∈ L2[0, 1]}. The smoothing spline esti-

mate is given by the element f ∈ S2 that minimizes

1

n

n∑
i=1

[yi − f(xi)]
2 + λ

∫ 1

0

[f ′′(x)]
2
dx. (2.17)

The penalty term on the right of Eq.(2.17) is an overall measure of the magnitude of the

curvature (roughness) of the function over the domain. Thus, the tuning parameter λ

controls the trade-off in the resulting estimate between smoothness and fidelity to the

data, and thus serves the same purpose as the variance and range parameters in a GP
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model. Large values of λ result in smoother functions while smaller values of λ result in

rougher functions that more closely match the data. Generally, λ is chosen by generalized

cross validation (GCV) [34], m-fold CV [35], or related methods (pp. 239-243, [36]; pp. 42-

52, [37]). The minimizer of Eq. (2.17) is technically called the cubic smoothing spline

because the solution can be shown to be a natural cubic spline with knots at all of the

distinct values of xi, i = 1, . . . , n (p. 230, [36]).

Multivariate Smoothing Splines. The simplest extension of smoothing splines to

multiple inputs is the additive model [37]. For instance, assume that

f ∈ Fadd = {g : g(x) =

p∑
j=1

gj(xj), gj ∈ S2}, (2.18)

i.e., f(x) =
∑p

j=1 fj(xj) is a sum of univariate functions belonging to S2. The additive

smoothing spline is the minimizer of

1

n

n∑
i=1

[yi − f(xi)]
2 +

p∑
j=1

λj

∫ 1

0

[
f ′′j (xj)

]2
dxj (2.19)

over f ∈ Fadd. The minimizer of the expression in Eq. (2.19), f̂(x) =
∑p

j=1 f̂j(xj), takes

the form of a natural cubic spline for each of the functional components f̂j. Notice that

there are p tuning parameters for the additive smoothing spline. These are generally

determined by minimizing GCV score with respect to the λjs.

To generalize the additive model to allow for two way interactions, we will assume f

belongs to the space

F2way = {g : g(x) =

p∑
j=1

p∑
k=j+1

gj,k(xj, xk) : gj,k ∈ S2 ⊗ S2}, (2.20)

where ⊗ represents the tensor product (pp. 30-31, [38]). For two function spaces G andH,

the tensor product space is the vector space generated by pairwise products of functions
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in G and H, respectively, i.e.,

G ⊗H =

{
N∑
k=1

gkhk : gk ∈ G, hk ∈ H, N = 1, 2, . . .

}
. (2.21)

An intuitive way to think of fj,k ∈ S2⊗S2 is that for any fixed value of x, fj,k(x, ·) ∈ S2

and fj,k(·, x) ∈ S2. For a complete treatment of tensor product splines and SS-ANOVA,

see [39, 40, 41].

We will also need some additional notation to completely specify all of the functional

components (main effects and two-way interactions) of f . Let

S2 = {g ∈ S2 :

∫ 1

0

g(x)dx = 0}. (2.22)

This implies that f ∈ S2 ⊗ S2 has the property that

∫ 1

0

f(x1, x2)dx1 =

∫ 1

0

f(x1, x2)dx2 = 0. (2.23)

Now, any function f ∈ F2way can be written

f(x) = b0 +

p∑
j=1

fj(xj) +

p∑
j=1

p∑
k=j+1

fj,k(xj, xk), (2.24)

where b0 is a constant, fj ∈ S2 and fj,k ∈ S2 ⊗ S2. The representation in Eq. (2.24)

is the functional ANOVA decomposition of f . The constant b0 =
∫
[0,1]p

f(x)dx can be

interpreted as the overall “average” value of the function; however, technically b0 =

E[f(x)] only when x has a uniform distribution over [0, 1]p. Also, since

∫ 1

0

fj,k(xj, xk)dxj =

∫ 1

0

fj,k(xj, xk)dxk = 0, (2.25)
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the function fj is the main effect function for variable xj in the sense that

fj(xj) =

(∫
[0,1]p−1

f(x)dx(−j)

)
− b0, (2.26)

where dx(−j) = dx1, . . . , dxj−1, dxj+1, . . . , dxp. Additional background on the preceding

relationships is given in [39] and [41].

The two-way interaction smoothing spline is given by the element f ∈ F2way that

minimizes

1

n

n∑
i=1

[yi−f(xi)]
2+

p∑
j=1

λj

∫ 1

0

[
∂2

∂x2j
fj(xj)

]2
dxj+

p∑
j=1

p∑
k=j+1

λj,k

∫ 1

0

∫ 1

0

[
∂4

∂x2jx
2
k

fj,k(xj , xk)

]2
dxjdxk,

(2.27)

where the λj, λj,k are tuning parameters that are usually chosen via cross validation.

This penalizes the main effect functions exactly the same as before, and also penalizes the

two-way interaction functions by a measure of roughness based on a mixed 4th derivative.

The minimizer of the expression in Eq. (2.27) can be obtained via matrix algebra using

results from reproducing kernel Hilbert space (RKHS) theory; for details see [39], [41].

Notice that this is slightly different from the penalty for the thin plate spline ([39], [40]),

which is popular in spatial statistics.

Categorical Predictors. A large advantage to the SS-ANOVA framework is the ability

to handle categorical predictors with little additional complication. Assume once again

that x1, . . . , xq are continuous on [0, 1], while xq+1, . . . , xp are unordered categorical vari-

ables with xj ∈ {1, 2, . . . ,mj} for j = q+1, . . . , p. For notational convenience, let Gj = S2

for j = 1, . . . , q. Also, let the set of all functions on the domain of xj (i.e., {1, 2, . . . ,mj})

be denoted as Gj for j = q + 1, . . . , p.

We can once again consider the class of additive functions

Fadd = {g : g(x) =

p∑
j=1

gj(xj), gj ∈ Gj}, (2.28)
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The additive smoothing spline is then the minimizer of

1

n

n∑
i=1

[yi − f(xi)]
2 +

q∑
j=1

λj

∫ 1

0

[
f ′′j (xj)

]2
dxj (2.29)

over f ∈ Fadd. Notice that in the traditional setup above, there is no penalty term for

roughness on the functions of the categorical predictors. To generalize to the class of

functions with two way interactions, assume f belongs to the space

F2way =

{
g : g(x) =

p∑
j=1

p∑
k=j+1

gj,k(xj, xk) for gj,k ∈ Gj ⊗ Gk

}
. (2.30)

For f ∈ Fadd, the function fj,k for xj continuous and xk categorical amounts to allowing

for a separate curve fxk(xj) for each possible value of xk = 1, . . . ,mk. We can further

write f in the functional ANOVA form as in Eq. (2.24) by introducing the following

notation:

Gj =

{
{g : g ∈ Gj and

∫ 1

0
g(x)dx = 0} for j = 1, . . . , q

{g : g ∈ Gj and
∑mj

x=1 g(x) = 0} for j = q + 1, . . . , p
(2.31)

Now in a similar manner to Eq. (2.24), any function f ∈ F2way can be written

f(x) = b0 +

p∑
j=1

fj(xj) +

p∑
j=1

p∑
k=j+1

fj,k(xj, xk), (2.32)

where b0 is a constant, fj ∈ Gj and fj,k ∈ Gj ⊗ Gk.

The two-way interaction smoothing spline with categorical predictors is then given

by the element f ∈ F2way that minimizes

1

n

n∑
i=1

[yi − f(xi)]
2+

q∑
j=1

λj

∫ 1

0

[
∂2

∂x2j
fj(xj)

]2
dxj+

q∑
j=1

q∑
k=j+1

λj,k

∫ 1

0

∫ 1

0

[
∂4

∂x2jx
2
k

fj,k(xj , xk)

]2
dxjdxk
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+

q∑
j=1

p∑
k=q+1

λj,k

mk∑
xk=1

∫ 1

0

[
∂2

∂x2j
fj,k(xj , xk)

]2
dxj , (2.33)

where the λj, λj,k are tuning parameters that are usually chosen via cross validation.

The penalty in Eq. (2.33) is similar to that for the two-way interaction smoothing spline

without categorical variables. However, there is no penalty on the main effect of the

categorical variables. The last term in Eq. (2.33) represents a roughness penalty on

the curve as a function of the continuous input xj that results in each category of the

categorical input xk. The penalties in Eqs. (2.27) and (2.33) are partially shaped by the

the computational convenience involved by using the RKHS approach. Again, the reader

is referred to [39] or [41] for a detailed treatment of the computational details.

Generalizing to the ACOSSO estimate. The COmponent Selection and Shrinkage

Operator (COSSO) [42] penalizes on the sum of the norms instead of the squared norms

as in Eqs. (2.29) and (2.33). This modification leads to input variable selection and

provides better performance than the traditional smoothing spline on data sets with a

large number of predictors. For ease of presentation, we will restrict attention to the

additive model for the remainder of this section. However, all of the following discussion

applies directly to the two-way interaction model as well.

The penalty used to obtain the COSSO estimate is new, and is motivated by the need

to perform function estimation and variable selection on categorical predictors, which

are unpenalized by the traditional smoothing spline. The additive COSSO estimate,

f̂(x) =
∑
f̂j(xj), is given by the function f ∈ Fadd that minimizes

1

n

n∑
i=1

[yi − f(xi)]
2+λ

 q∑
j=1

{[∫ 1

0
f ′j(xj)dxj

]2
+

∫ 1

0

[
f ′′j (xj)

]2
dxj

}1/2

+

p∑
j=q+1


mj∑
xj=1

f2j (xj)


1/2
 .

(2.34)

There are four key differences in the penalty term in Eq. (2.34) relative to the additive

smoothing spline of Eq. (2.29). First, there is an additional term
[∫ 1

0
f ′j(xj)dxj

]2
, which
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can also be written [fj(1)− fj(0)]2, that penalizes the magnitude of the overall trend of

the functional components fj that correspond to continuous predictors. Second, there is

now a penalty on the L2 norms of the fj that correspond to the categorical predictors.

Third, in contrast to the squared semi-norm in the additive smoothing spline, each term

in the sum in the penalty in Eq. (2.34) can be thought of as a norm over functions fj ∈ Gj

for j = 1, . . . , p. This has a similar effect to the Least Absolute Selection and Shrinkage

Operator (LASSO) [43] for linear models in that it encourages some of the terms in the

sum to be exactly zero. These terms are norms over the fj; when such zeros result,

some of the f̂j in the solution are set to exactly zero, thus providing automatic model

selection in a manner similar to the grouped LASSO [44]. Fourth, the COSSO penalty

only has one tuning parameter, which can be chosen via GCV or similar means. It can

be demonstrated analytically that the COSSO penalty with one tuning parameter (i.e.,

λ) gives as much flexibility as the smoothing spline penalty with p tuning parameters

[42].

Finally, ACOSSO is a weighted version of COSSO, where a rescaled norm is used

as the penalty for each of the functional components. This allows for more smoothing

of irrelevant curves and more fidelity to the data for important curves. Specifically, we

select as our estimate the function f ∈ Fadd that minimizes

1

n

n∑
i=1

[yi−f(xi)]
2+λ1

q∑
j=1

wj

{[∫ 1

0
f ′j(xj)dxj

]2
+

∫ 1

0

[
f ′′j (xj)

]2
dxj

}1/2

+λ2

p∑
j=q+1

wj


mj∑
xj=1

f2j (xj)


1/2

,

(2.35)

where the wj, 0 < wj ≤ ∞, are weights that can depend on an initial estimate of f which

we denote f̃ . Here we have two tuning parameters: one for the penalty on functional

components related continuous inputs, and one for the penalty on functional components

related categorical inputs. In our experience, this gives superior performance to the one

tuning parameter approach when there are both continuous and categorical inputs. Our

implementation of ACOSSO takes f̃ to be the traditional smoothing spline of Eq. (2.19),
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which is chosen by the GCV criterion with all λj = λ. We then use

wj =


([∫ 1

0
f̃ ′j(xj)dxj

]2
+
∫ 1

0

[
f̃ ′′j (xj)

]2
dxj

)−1
for j = 1, . . . , q(∑mj

xj=1 f
2
j (xj)

)−1
for j = q + 1, . . . , p,

(2.36)

with λ1 and λ2 selected via 5-fold CV [35]. The wj allow for more flexible estimation (less

penalty) on the functional components that show more signal in the initial estimate. As

shown in [18] (using only continuous inputs), this approach improves performance con-

siderably over COSSO on many test cases and has more favorable asymptotic properties

than COSSO.

The minimizer of the expression in Eq. (2.35) is obtained using an iterative algorithm

and a RKHS framework similar to that used to find the minimizer of Eqs. (2.29) and (2.33)

in [39, 41]. The optimization problem for the two-way interaction model can be posed in

a similar way to Eq. (2.35); see [18] for more details on this and the computation of the

solution. The two-way interaction model is used in the results of Sections 4 and 5. The

novelty in what is presented here over [18] is the extension to a treatment of categorical

inputs.

2.3 Bayesian Smoothing Spline ANOVA

A potentially problematic issue that GPs face with complex computer models is the

large number of input variables present in many analyses. There have been some recent

approaches to variable selection for GPs [26, 45] to alleviate this issue. The Bayesian

Smoothing Spline ANOVA (BSS-ANOVA) of [19] is a GP model with a nonconventional

covariance function that tackles the high dimensionality issue on two fronts: (i) variable

selection to eliminate uninformative variables from the model and (ii) restricting the level

of interactions involved among the variables in the model. This is done through a fully

Bayesian approach which can also allow for categorical input variables with relative ease.
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Once again, we first describe the BSS-ANOVA procedure under the assumption that the

predictors are continuous, then introduce the treatment of categorical predictors and the

BSS-ANOVA estimator.

Similar to the ACOSSO described in Section 2.2, the BSS-ANOVA model decomposes

the regression function as

f(x) = b0 +

p∑
j=1

fj(xj) +

p∑
j=1

p∑
k=j+1

fj,k(xj, xk), (2.37)

where b0 ∈ R is the overall mean, fj ∈ S1 is the functional main effect for xj, and

fj,k ∈ S1 ⊗ S1 is the functional interaction between xj and xk, and

S1 = {g : g absolutely continuous and g′ ∈ L2[0, 1],

∫ 1

0

g(x)dx = 0}. (2.38)

However, rather than estimating f by minimizing an objective function like ACOSSO,

a Bayesian analysis specifies priors for fj and fj,k and then analyzes their posterior dis-

tributions. The functions fj and fj,k have Gaussian process priors, restricted to the

appropriate spaces fj ∈ S1 and fj,k ∈ S1 ⊗ S1, respectively, so that the posterior proba-

bility that these functions reside in the desired space is one.

To ensure that each draw (i.e., random realization) from fj’s prior (and thus pos-

terior) is a member of S1, we select a Gaussian process prior with mean zero and

cov(fj(xj), fj(x
′
j)) = ω2

jK1(xj, x
′
j), where ω2

j controls the variance of the function. Wahba

[39] shows that by defining the covariance using the specialized covariance

K1(xj, x
′
j) = c

[
B1(xj)B1(x

′
j) +B2(xj)B2(x

′
j)
]
−B4(|xj − x′j|)/4!, (2.39)

where Bl is the lth Bernoulli polynomial, then each draw from this Gaussian process

resides in S1. See [19] for a more general form of the covariance function in Eq.(2.39),

18



where the support (i.e., any draw) of the resulting Gaussian process can be made to

belong to a given mth order Sobolev space for m = 1, 2, . . . . Reich et.al. [19] recommend

using m = 1 based on empirical performance; thus the m = 1 case is presented here.

In this covariance,

KP (xj, x
′
j) = c[B1(xj)B1(x

′
j) +B2(xj)B2(x

′
j)] (2.40)

controls the variability of the quadratic trend and

KN(xj, x
′
j) = −B4(|xj − x′j|)/4! (2.41)

is the stationary covariance of the deviation from the quadratic trend. So the model

essentially fits a quadratic response surface regression plus a remainder term which is

a zero-mean stationary Gaussian process constrained to be orthogonal to the quadratic

trend [19]. The user-specified constant c is set to 100 to give vague, yet proper, priors

for the quadratic trend.

The interaction terms are also modeled as Gaussian processes. Let fj,k have mean

zero and covariance

Cov[fj,k(xj, xk), fj,k(x
′
j, x
′
k)] = ω2

j,kK2(xj, xk, x
′
j, x
′
k), (2.42)

where

K2(xj , xk, x
′
j , x
′
k) =

[
KP (xj , x

′
j)+KN (xj , x

′
j)
] [
KP (xk, x

′
k)+KN (xk, x

′
k)
]
+(c−1)KP (xj , x

′
j)KP (xk, x

′
k).

(2.43)

For large c, the final term (c−1)KP (xj, x
′
j)KP (xk, x

′
k) gives a vague prior to the bivariate

quadratic trend.

Categorical Predictors. The BSS-ANOVA framework is also amenable to unordered
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categorical predictors. Assume xj ∈ {1, 2, ...,mj} is categorical and let θjl = fj(l).

That is, for categorical predictors the SS-ANOVA model reduces to the usual ANOVA

model where θjl is the effect for factor level l. A Bayesian ANOVA model includes

priors for the θjl. To keep with the functional ANOVA construction and identify the

intercept, we enforce the sum-to-zero constraint
∑mj

l=1 θjl = 0. This constraint can be

achieved by defining the model θ∗jl
iid∼ N(0, ω2

j ), l = 1, ...,mj, then conditioning on the

event
∑mj

l=1 θjl = 0. Since a Gaussian random vector conditional on the value of a

linear combination of that vector is still Gaussian (see [24] for example), this constrained

model can be equivalently expressed by calculating the covariance of the θjl conditional

on
∑mj

l=1 θjl = 0. This results in the mean-zero Gaussian process with singular covariance

cov(fj(s), fj(t)) = ω2
jK1(s, t), where the covariance is defined as,

K1(s, t) =
mj − 1

mj

I(s = t)− 1

mj

I(s 6= t), (2.44)

and I(·) is the indicator function.

Interactions including categorical predictors with the covariance given in (2.44) are

handled no differently than interactions between continuous predictors. For example,

assume x1 ∈ {1, ...,m1} is categorical and x2 ∈ [0, 1] is continuous. The covariance-

based interaction results in a model for which f1,2(x1, x2) = hx1(x2) for some hx1 ∈ S1.

That is, the effect of x2 is different within each level of x1. An attractive feature of this

covariance is that it enforces the restrictions
∫ 1

0
hx1(x2)dx2 = 0 for all x1 ∈ {1, ...,m1}

and
∑m1

l hl(x2) = 0 for all x2 ∈ [0, 1] to identify the main effects.

Variable selection. It is common in Bayesian variable selection to represent the subset

of predictors included in the model with indicator variables γj and γj,k, where γj is one if

the main effect for xj is in the model and zero otherwise, and γj,k is one if the interaction

for xj and xk is in the model and zero otherwise. Since all functions have mean zero, if

the standard deviation ωj (or ωj,k) is also zero, then the function fj (or fj,k) is equal to
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zero for all values of the covariate and is effectively removed from the model. Therefore,

to perform variable selection in the nonparametric setting, we specify below priors for

the standard deviations ωj and ωj,k in terms of Bernoulli random variables γj and γj,k

to give priors with positive prior probability at zero. To account for the scale of the

response via its standard deviation σ, we model the standard deviations as ωj = στj and

ωj,k = στj,k. We assume τj = γjηj and τj,k = γj,kηj,k, where γj, γj,k
iid∼ Bern(0.5) and

ηj, ηj,k
iid∼ HC(ρ), where ρ is the median of the half-Cauchy prior. Also, we select a flat

prior for the intercept b0 and assume σ−2 ∼ Gamma(0.01,0.01).

A common measure of variable importance is the posterior inclusion probability,

P (γj = 1|y). Often a variable is selected if P (γj = 1|y) > 0.5 [46]. Using this se-

lection criteria, Reich et al. [19] show that taking ρ = 2/
√
n gives an approximate Type

I error of 0.05. To compute the posterior inclusion probabilities, we may treat the model

indicators γj and γj,k in the same fashion as other model parameters, as unknown param-

eters to be explored using the MCMC algorithm described in [19]. This is referred to as

stochastic search variable selection [47, 48, 49], which has been shown to be an effective

method for computing posterior model probabilities.

3 Sensitivity and Uncertainty Analysis

The uncertainty in each element of x is typically characterized by a probability distri-

bution. Such distributions are intended to numerically capture the existing knowledge

about the elements of x and are often developed through an expert review process and/or

through experimentation. See [12, 13] for more on the characterization of input variable

uncertainty. Variance decomposition is perhaps the most informative and intuitive means

with which to conduct SA (i.e., to summarize the uncertainty in an analysis outcome

y = f(x) resulting from uncertainty in individual elements xj of x). This procedure uses
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measures such as

sj =
Var(E[f(x) | xj])

Var(f(x))
(3.1)

and

Tj =
E(Var[f(x) | x(−j)])

Var(f(x))
=

Var(f(x))− Var(E[f(x) | x(−j)])

Var(f(x))
, (3.2)

to quantify this uncertainty, where x(−j) = {x1, . . . , xj−1, xj+1, . . . , xp}. The use of these

measures is reviewed in [50, 12, 51]. The quantity sj corresponds to the proportion of

the uncertainty in y that can be attributed to xj alone, while Tj corresponds to the

total uncertainty that can be attributed to xj and its interactions with other variables.

These calculations require the evaluation of p-dimensional integrals which are typically

approximated via Monte Carlo sampling on the joint distribution of the elements x. This

is too computationally intensive to be feasible for most complex computer models, and

is thus the reason for describing the meta-model approaches in the previous section.

An alternative procedure to the direct evaluation of Tj and similar measures is to use

a meta-model (or surrogate) for f to perform the necessary model evaluations [21, 3, 4].

That is, first collect a modest number of runs from the computer model, fit a meta-

model, then use the meta-model to perform the computationally intensive calculations.

Additional uncertainty introduced by the estimation error in the meta-model can be

accounted for with Bayesian credible sets or bootstrapping techniques [4]. Similarly,

conducting UA usually involves the estimation of a Cumulative Distribution Function

(CDF) (or inverse CDF, i.e., quantiles) with Monte Carlo procedures, which can be cost-

prohibitive for expensive computer models. In this case as well, meta-models can be

estimated based on a limited number of computer model runs and then used to generate

the thousands of model evaluations necessary to approximate a CDF. This approach to

UA and SA is illustrated in Sections 4 and 5.
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4 Simulation Examples

In this section, we investigate the properties of the proposed methodology for conduct-

ing UA and SA with two test models where the actual values for y can be calculated.

Specifically, we will use the following two example models which are modified from exam-

ples used in several previous studies [52, 12, 53, 54, 4] to incorporate categorical inputs.

Specifically, we will use

y1 = f1(x) =



3.3(x5 + 0.5)4 if x1 = 1

0.5(x5 + 0.5)4 if x1 = 2

2.0(x5 + 0.5)4 if x1 = 3

0.6(x5 + 0.5)4 if x1 = 4

0.4(x5 + 0.5)4 if x1 = 5

4.0(x5 + 0.5)4 if x1 = 6

(4.1)

y2 = f2(x) = [5.72φ(x1)(x5 − 0.5)]3 + 100[φ(x1)− 0.5][φ(x2)− 0.5]3, (4.2)

where

φ(x) =



0.05 if x = 1

0.95 if x = 2

0.20 if x = 3

0.80 if x = 4

0.40 if x = 5

0.60 if x = 6

(4.3)

Each example output has 15 input variables x1, . . . , x15, although not all of the inputs

have an effect on each of the outputs (i.e., there are multiple “dummy” variables). Output

y1 is a function of only x1 and x5, while y2 is a function of only x1, x2 and x5. It

is common in the analyses of real systems that some outputs are not affected (or only

negligibly affected) by some of the uncertain variables under consideration [55, 11]. Inputs

x1, x2, x3, x4 are discrete uniform on the integers {1, 2, 3, 4, 5, 6}. The other 11 variables

are continuous uniform on [0, 1]. While y1 and y2 are technically functions of only a

few inputs, the many uninformative inputs introduce a substantial increase in estimation
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difficulty that is often present in real problems (e.g., see the Yucca Mountain analysis

presented in Section 5).

It is assumed that the output we actually observe is subject to a small amount of

error to mimic the numerical error present in a real application; that is, we observe

yi,k = fk(xi)+εi,k, with (i) k = 1, . . . , 2 indexing over the two outputs and (ii) i = 1, . . . , n

indexing over observations. In these examples, we let the εi,k terms be generated as iid

N (0, 0.25) variables. This produces signal to noise ratios (SNRs) of 159 and 558 for y1

and y2, respectively, where SNR = Var[f(x)]/V ar(ε). These analytic models have an

advantage over the real model considered in Section 5. Specifically, they are fast enough

to evaluate so that it is possible to calculate with great precision any quantities we wish

such as the true values for the CDF of yk, etc.

To evaluate the various meta-models, we generate 100 random samples (realizations)

of size n = 150 from the x distribution. For each of the 100 samples, we evaluate the

the outputs y1 and y2 at the 150 sample points, then obtain the estimate f̂k, for each

output k = 1, 2, using each of the three methods (GP, ACOSSO, BSS-ANOVA) described

in Section 2. We then randomly generate N = 1000 new points x∗1, . . . ,x
∗
N (the same

1000 new points are used for all 100 samples), evaluate f1(x
∗
i ), f2(x

∗
i ), i = 1, . . . , N , and

estimate the integrated squared prediction error

ISEk =
1

N

N∑
i=1

(fk(x
∗
i )− f̂k(x∗i ))2, k = 1, 2. (4.4)

The quantity Pred MISEk in Table 1 is the mean over the 100 random samples of

the ISEk. Pred 99%k is the mean over the 100 samples of the 99-th percentile of the

squared predition error (fk(x
∗
i )− f̂k(x∗i ))2. Finally, the sample fk(x

∗
i ) is used to estimate

the CDF of fk and CDF ISEk is the mean over the 100 samples of the integrated squared

estimation error of the true CDF curve to the estimated CDF via the meta-model values

f̂k(x
∗
i ).
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Table 1: Simulation Summary Statistics over 100 realizations of outputs y1 and y2.

Test Function 1

Estimator Pred MISE1 Pred 99%2 CDF ISE3

ACOSSO 0.28 (0.03) 3.98 (0.60) 0.006 (0.000)

BSS-ANOVA 0.18 (0.01) 3.09 (0.46) 0.006 (0.000)

GP 1.09 (0.06) 18.26 (1.73) 0.010 (0.001)

Test Function 2

Estimator Pred MSE Pred 99% CDF ISE

ACOSSO 1.61 (0.21) 21.31 (2.72) 0.011 (0.001)

BSS-ANOVA 3.81 (0.19) 48.04 (2.94) 0.015 (0.001)

GP 4.87 (0.25) 77.02 (7.90) 0.018 (0.001)
1 mean (over 100 samples) of the integrated squared prediction error.
2 mean (over 100 samples) of the 99-th percentile squared prediction error.
3 mean (over 100 samples) of the CDF integrated squared estimation error.

Figure 1 displays the fitted meta-models for y1 from the first sample of size n = 150

of the 100 samples described above. The dashed curves in Figure 1(a) are the true

main effect curves for x5 for the various levels of x1, i.e., E(y1 | x1, x5) is plotted across

x5 for each level of x1. Figures 1(b), 1(c), 1(d) give the estimated main effects from

ACOSSO, BSS-ANOVA, and GP meta-models, (described in Sections 2.2, 2.3, and 2.1)

respectively, i.e., E(y1 | x1, x5) is estimated via Monte Carlo of the meta-model f̂ and

plotted across x5 for each level of x1. From the plots it is clear that ACOSSO and BSS-

ANOVA estimate the true model very well. GP also estimates the model well, but does

have more estimation error than the other two methods, particularly at the higher values

of x5.

Table 1 provides the summary statistics defined above for the entire simulation of 100

samples for both outputs y1 and y2. BSS-ANOVA has the least estimation error for the

y1 analysis, with ACOSSO close behind, and GP has the most estimation error. For the

y2 analysis, ACOSSO is the best method, with BSS-ANOVA next then GP.
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Figure 1: Output y1 for the first random sample of size n = 150, (a) Scatterplot of y1 plotted
against x5, dashed curves are the true main effect curves for x5 conditional on the individual
levels of x1, (b) Main effect curves resulting from ACOSSO estimate, (c) Main effect curves
resulting from BSS-ANOVA estimate, and (d) Main effect curves resulting from GP estimate.
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Figure 2 displays the fitted meta-models once again, this time on the output y2 for a

given data realization. In this plot it is clear that ACOSSO estimates the second output

function more accurately than the other two methods. BSS-ANOVA also estimates the

function well, but is not as flat as needed across x5 for x1 = 1 and x1 = 3, and does not

have quite enough curvature across x5 for x1 = 2. GP has the most trouble of the three

methods on this output, as it appears to be undersmoothing across x5 for x1 = 2, yet

oversmoothing across x5 for x1 = 4.

ACOSSO estimates are much faster to obtain than BSS-ANOVA and GP estimates,
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Figure 2: Output y2 for the first random sample of size n = 150, (a) Scatterplot of the output
y2 plotted against input x5 for each possible value of the categorical input x1, dashed curves are
the true main effect curves for x5 for the various levels of x1, (b) Main effect curves resulting
from ACOSSO estimate, (c) Main effect curves resulting from BSS-ANOVA estimate, and (d)
Main effect curves resulting from GP estimate.
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since they can be solved as a quadratic programming problem with linear constaints [18].

BSS-ANOVA requires an MCMC procedure [19] to obtain the estimate, and GP esti-

mation requires an iterative Newton Raphson procedure. However, if confidence bounds

for parameter estimates are desired, the BSS-ANOVA procedure has faster computation

times than ACOSSO, as ACOSSO will require a bootstrap procedure [4] to produce

confidence sets for parameter(s) of interest. When using the BSS-ANOVA procedure,

however, confidence statements can naturually be made based on the approximate pos-

terior distribution of the parameter(s) of interest, which can be computed with minimal
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additional cost after (or during) the MCMC estimation. When “confidence” sets are con-

structed to include say 95% of the posterior probability for a given parameter, they are

typically called 95% credible sets, to distinguish them from a 95% confidence set which

implies 95% coverage of the true value of the parameter under repeated sampling (see

Eq.(2.16) for a formal definition of a credible set).

The GP estimates are faster to obtain than BSS-ANOVA estimates since the GP

procedure used here is based off of MLEs for parameters (i.e., not MCMC). Credible

sets from the GP can be produced with an empirical Bayesian approach [56], in which

case it is the fastest of the methods to produce “confidence” sets. Credible sets for

ACOSSO could be produced using an empirical Bayesian approach in a similar manner

as well. However, the empirical Bayesian approach is known to provide overly optimistic

confidence statements as it ignores parameter estimation error. To avoid this issue,

[14] and [26] use a fully Bayesian approach (i.e., incorporating parameter estimation

uncertainty using the posterior distribution). In a fully Bayesian approach, requiring an

MCMC routine, BSS-ANOVA will be more efficient than the traditional GP for moderate

to large samples, as the GP approach requires a n × n matrix solve for each MCMC

iteration, while BSS-ANOVA only requires a n×n matrix solve once prior to the MCMC

(see [19] for more computational details).

5 SA and UA on Results from Yucca Mountain

This example comes from a computational model for the proposed Yucca Mountain

repositrory for high-level radioactive waste [16, 17]. There are a total of 145 input

variables (several of which are categorical in nature) for the particular analysis situa-

tion under consideration and dozens of time dependent responses. The models involved

are very expensive to run, and were evaluated at input values provided by a Latin Hy-

percube sample [57, 58] of size n = 300. A subset of the entire dataset is available
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at http://www.lanl.gov/~storlie/CompModSA/ym_data.txt. The output variable for

this illustration is

ESIC239C.10K: Cumulative release of Ic (i.e. Glass) colloid of 239 Pu (Plutonium 239)
out of the engineered barrier system into the unsaturated zone at 10,000 years.

The input variables that appear in plots and tables below are:

TH.INFIL: Categorical variable describing different scenarios for infiltration and thermal
conductivity in the region surrounding the drifts (see p.K-14, [16]).

CPUCOLWF: Concentration of irreversibly attached plutonium on glass/waste form col-
loids when colloids are stable (mol/L).

RHMUNO65: The in-drift precipitated salts (IDPS) process model uncertainty factor
for the logarithm of the chloride to nitrate ratio of the in-drift waters at relative
humidity >65% and ≤85% (dimensionless).

FHHISSCS: Frenkel Halsey Hill water vapor adsorption isotherm parameter, s, for com-
mercial spent nuclear fuel (CSNF) rind (dimensionless).

SEEPUNC: Uncertainty factor to account for small-scale heterogeneity in fracture per-
meability (dimensionless).

PH2DHLS: Pointer variable used to determine pH in the defense high level waste (DHLW)
cell (Cell 1a) of codisposed spent fuel (CDSP) waste packages under liquid influx
conditions (dimensionless).

PH2MCONS: Pointer variable used to determine pH in the multicanister overpack (MCO)
cell (Cell 1b) of CDSP waste packages under vapor influx conditions (dimension-
less).

For a more detailed description of all input and output variables for the Yucca Moun-

tain analysis, see Tables K3-1, K3-2, K3-3, and K3-4 of [16].

In this example, we first conducted some basic data display techniques such as scat-

terplots and boxplots of the data to see if any transformations were needed to help

spread the data out evenly over the respective ranges. This resulted in the following

transformation

ESIC239C.10K = log(ESIC239C.10K + 0.1).
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We then looked at correlations among input variables, and removed any input variables

that had a correlation higher than 0.95 with another input variable (only the first of

such input variables was kept). This resulted in removal of four input variables. Finally,

to allow for efficient computation and better estimation, we screened the remaining 141

input variables for importance to the output ESIC239C.10K using the SRD/RCC scat-

terplot test for non-randomness described in [59, 13]. We used α = 0.10 as a somewhat

liberal threshold in the SRD/RCC test in order to not exclude any inputs which could

be informative. This resulted in a remaining 17 inputs (15 continuous and 2 categorical)

that could possibly have a non-negligable effect on the output.

Figure 3(a) displays the main effect curves for CPUCOLWF at each level of the

categorical variable TH.INFIL estimated with the ACOSSO meta-model, i.e.,

E(ESIC239C.10K | CPUCOLWF,TH.INFIL) (5.5)

estimated via monte carlo of the meta-model f̂and plotted across CPUCOLWF for each

level of TH.INFIL. Figure 3(c) displays the same plot using the BSS-ANOVA esti-

mate. CPUCOLWF and TH.INFIL are the two most influential inputs on the output

ESIC239C.10K as determined by a SA of ESIC239C.10K, which is presented later in this

section.

Figure 3(b) displays the estimated CDF produced from the ACOSSO meta-model

along with simultaneous 95% confidence bands obtained via bootstrapping [4]. Fig-

ure 3(d) displays the estimated CDF from BSS-ANOVA along with with simultaneous

95% Bayesian credible bands obtained from the approximate posterior distribution re-

sulting from the MCMC routine described in [19]. The blue curves in these plots are

the empirical (i.e., data) CDF obtained using 300 computer model evaluations. These

CDFs are less smooth because there are jumps at each of the 300 points; in contrast, the

ACOSSO and BSS-ANOVA estimates use 10,000 points to produce the CDFs, resulting
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Figure 3: Uncertainty results for ESIC239C.10K: (a) ESIC239C.10K scatterplot with fitted
main effect curves from ACOSSO, (b) Estimated CDF (solid line) for ESIC239C.10K from
ACOSSO along with 95% simultaneous confidence bands (dashed), (c) ESIC239C.10K scatter-
plot with fitted main effect curves from BSS-ANOVA, and (d) Estimated CDF (solid line) for
ESIC239C.10K from BSS-ANOVA along with 95% simultaneous credible bands (dashed).
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in a much smoother appearance. ACOSSO and BSS-ANOVA give very similar estimation

results for this example, which is reassuring with respect to the validity of the UA and

SA results.

Table 2 provides the SA results for ESIC239C.10K obtained using ACOSSO and

BSS-ANOVA. The quantity R2 is defined as

R2 = 1−
∑n

i=1(yi − f̂(xi))
2∑n

i=1(yi − 1/n
∑n

j=1 yi)
2

(5.6)
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and provides a measure of what proportion of the empirical variance in the output is

accounted for by the meta-model (i.e., how well the meta-model matches the data).

Quantities above 0.90 and closer to 1.00 are preferred but an R2 = 1.00 does not nec-

essarily mean that the meta-model will provide good prediction for new observations.

Also provided are estimates of the total variance index (Tj) for the informative inputs as

defined in Eq.(3.2) via a Monte Carlo sample of the meta-model as described in [4]. The

95% Confidence Intervals (CIs) for the Tj are obtained via bootstrapping for ACOSSO

[4] and Bayesian credible sets for BSS-ANOVA [19]. In our experience, it is beneficial

to consider results from both frequentist and Bayesian analyses for complex problems

to determine if both approaches give similar results. If this is not the case, then it is

important to assess the problem further, e.g., get an expert’s opinion on the results, try

to understand why the results are different, and/or perform more model runs if possible.

In this example, it is clear that the main drivers of the uncertainty in the output

ESIC239C.10K are CPUCOLWF and TH.INFIL. As shown in Table 2, CPUCOLWF

(along with its interactions with other inputs) accounts for approximately 47% to 60% of

the total uncertainty in the output. TH.INFIL and its interactions account for approxi-

mately 25% to 52% of the total uncertainty. RHMUNO65, FHHISSCS, and SEEPUNC

(along with their interations) account for approximately another 3-6%, 4-5% and ∼2%,

respectively, of the uncertainty. The BSS-ANOVA method identified two more inputs

(PH2DHLS and PH2MCONS) than ACOSSO did with these variables (along with their

interactions) potentially contributing ∼7% of the total variance.

6 Conclusions and Further Work

Two new meta-models, ACOSSO and BSS-ANOVA, are presented, which are similar in

their functional ANOVA construction. However, ACOSSO is a frequentist type approach

in the sense that no prior distributions are explicitly assumed; in contrast BSS-ANOVA
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Table 2: Sensitivity Analysis Results for ESIC239C.10K obtained using ACOSSO and BSS-
ANOVA.

Meta-model: ACOSSO Meta-model: BSS-ANOVA

Model R2 = 0.951 Model R2 = 0.94

Input T̂j
2 95% Tj CI3 Input T̂j 95% Tj CI

CPUCOLWF 0.565 (0.473, 0.621) CPUCOLWF 0.524 (0.475, 0.579)

TH.INFIL 0.424 (0.360, 0.518) TH.INFIL 0.304 (0.248, 0.361)

RHMUNO65 0.063 (0.052, 0.126) RHMUNO65 0.026 (0.010, 0.056)

FHHISSCS 0.053 (0.041, 0.106) FHHISSCS 0.035 (0.003, 0.073)

SEEPUNC 0.020 (0.000, 0.040) SEEPUNC 0.020 (0.008, 0.036)

PH2DHLS 0.067 (0.038, 0.117)

PH2MCONS 0.065 (0.034, 0.094)
1 proportion of output variance in the the sample that is accounted for by the

meta-model as defined in Eq.(5.6).
2 estimate of the total variance index as defined in Eq.(3.2) via a Monte Carlo sample

of the meta-model.
3 95% Confidence Intervals (CIs) for the Tj , obtained via bootstrapping for the ACOSSO

meta-model and via Bayesian credible sets for the BSS-ANOVA meta-model.

is a fully Bayesian estimation procedure. ACOSSO estimates are generally faster to

obtain than BSS-ANOVA estimates, unless confidence bounds for parameter estimates

are desired, in which case BSS-ANOVA is somewhat faster.

Functional ANOVA construction and variable selection (e.g., ACOSSO and BSS-

ANOVA) can help to increase efficiency in function estimation and easily allows for

categorical inputs as special cases. When using functional ANOVA construction, the

main effect and interaction functions are immediately available (i.e., no need to numeri-

cally integrate). The practical benefits (e.g., better surface and CDF approximation) of

the functional ANOVA construction, inherent in ACOSSO and BSS-ANOVA, over the

traditional GP meta-model have been empirically demonstrated on two established test

cases. ACOSSO and BSS-ANOVA were then used to perform a UA and SA on an output

from the Yucca Mountain analysis, which had several categorical inputs, one of which

was very influential.

Functional ANOVA construction also lends itself well to allowing for “nonstationar-

33



ity” in function estimation [33], i.e., in situations where the output has sharp or rapid

changes in some parts of its domain, but is relatively smooth elsewhere. Approaches

to nonstationary modeling such as [60] and [61] are notoriously difficult to apply in a

high dimensional input space. In functional ANOVA construction however, the overall

function (which is potentially quite complex) is decomposed into fairly simple functions

(i.e., main effects or 2-way interactions) as indicated in Eq.(2.24). Nonstationarity can

be included in all or only some of these functional components. Since each of these

functional components lives in a low dimensional input space, it makes the extension to

nonstationarity much easier than for a general function of p inputs. This is a subject of

further work
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